Types#

Base classes#

Use Phantom to create arbitrary phantom types using boolean predicates.

from phantom import Phantom


def is_big(value: int) -> bool:
    return value > 5


class Big(int, Phantom, predicate=is_big):
    ...


assert isinstance(10, Big)  # this passes
class phantom.Phantom(instance)[source]#

Bases: PhantomBase, Generic[T]

Base class for predicate-based phantom types.

Class arguments

  • predicate: Predicate[T] | None - Predicate function used for instance checks. Can be None if the type is abstract.

  • bound: type[T] | None - Bound used to check values before passing them to the type’s predicate function. This will often but not always be the same as the runtime type that values of the phantom type are represented as. If this is not provided as a class argument, it’s attempted to be resolved in order from an implicit bound (any bases of the type that come before Phantom), or inherited from super phantom types that provide a bound. Can be None if the type is abstract.

  • abstract: bool - Set to True to create an abstract phantom type. This allows deferring definitions of predicate and bound to concrete subtypes.

__bound__: typing.ClassVar[type]#
classmethod __get_validators__()#

Hook that makes phantom types compatible with pydantic.

Return type:

typing.Iterator[typing.Callable[[object], typing.TypeVar(Derived, bound= PhantomBase)]]

classmethod __modify_schema__(field_schema)#

This final method is called by pydantic and collects overrides from Phantom.__schema__(). Override __schema__() to provide custom schema representations for phantom types.

Parameters:

field_schema (dict) –

Return type:

None

classmethod __schema__()#

Hook for providing schema metadata. Override in subclasses to customize a types schema representation. See pydantic’s documentation on __modify_schema__() for more information. This hook differs to pydantic’s __modify_schema__() and expects subclasses to instantiate new dicts instead of mutating a given one.

Example:

class Name(str, Phantom, predicate=...):
    @classmethod
    def __schema__(cls):
        return {**super().__schema__(), "description": "A name type"}
Return type:

phantom.schema.Schema

classmethod parse(instance)#

Parse an arbitrary value into a phantom type.

Raises:

TypeError

Parameters:

instance (object) –

Return type:

typing.TypeVar(Derived, bound= PhantomBase)

Boolean#

Types describing objects that coerce to either True or False respectively when calling bool() on them.

class phantom.boolean.Truthy(instance)[source]#

Bases: Phantom[object]

>>> isinstance("Huzzah!", Truthy)
True
>>> isinstance((), Truthy)
False
class phantom.boolean.Falsy(instance)[source]#

Bases: Phantom[object]

>>> isinstance((), Falsy)
True
>>> isinstance("Hej!", Falsy)
False

Country codes#

Exposes a CountryCode type that is a union of a Literal containing all ISO3166 alpha-2 codes, and a phantom type that parses alpha-2 codes at runtime. This allows mixing statically known values with runtime-parsed values, like so:

countries: tuple[CountryCode] = ("SE", "DK", ParsedAlpha2.parse("FR"))
phantom.iso3166.LiteralAlpha2#

Literal of all ISO3166 alpha-2 codes.

alias of Literal[‘AF’, ‘AX’, ‘AL’, ‘DZ’, ‘AS’, ‘AD’, ‘AO’, ‘AI’, ‘AQ’, ‘AG’, ‘AR’, ‘AM’, ‘AW’, ‘AU’, ‘AT’, ‘AZ’, ‘BS’, ‘BH’, ‘BD’, ‘BB’, ‘BY’, ‘BE’, ‘BZ’, ‘BJ’, ‘BM’, ‘BT’, ‘BO’, ‘BQ’, ‘BA’, ‘BW’, ‘BV’, ‘BR’, ‘IO’, ‘BN’, ‘BG’, ‘BF’, ‘BI’, ‘KH’, ‘CM’, ‘CA’, ‘CV’, ‘KY’, ‘CF’, ‘TD’, ‘CL’, ‘CN’, ‘CX’, ‘CC’, ‘CO’, ‘KM’, ‘CG’, ‘CD’, ‘CK’, ‘CR’, ‘CI’, ‘HR’, ‘CU’, ‘CW’, ‘CY’, ‘CZ’, ‘DK’, ‘DJ’, ‘DM’, ‘DO’, ‘EC’, ‘EG’, ‘SV’, ‘GQ’, ‘ER’, ‘EE’, ‘ET’, ‘FK’, ‘FO’, ‘FJ’, ‘FI’, ‘FR’, ‘GF’, ‘PF’, ‘TF’, ‘GA’, ‘GM’, ‘GE’, ‘DE’, ‘GH’, ‘GI’, ‘GR’, ‘GL’, ‘GD’, ‘GP’, ‘GU’, ‘GT’, ‘GG’, ‘GN’, ‘GW’, ‘GY’, ‘HT’, ‘HM’, ‘VA’, ‘HN’, ‘HK’, ‘HU’, ‘IS’, ‘IN’, ‘ID’, ‘IR’, ‘IQ’, ‘IE’, ‘IM’, ‘IL’, ‘IT’, ‘JM’, ‘JP’, ‘JE’, ‘JO’, ‘KZ’, ‘KE’, ‘KI’, ‘KP’, ‘KR’, ‘XK’, ‘KW’, ‘KG’, ‘LA’, ‘LV’, ‘LB’, ‘LS’, ‘LR’, ‘LY’, ‘LI’, ‘LT’, ‘LU’, ‘MO’, ‘MK’, ‘MG’, ‘MW’, ‘MY’, ‘MV’, ‘ML’, ‘MT’, ‘MH’, ‘MQ’, ‘MR’, ‘MU’, ‘YT’, ‘MX’, ‘FM’, ‘MD’, ‘MC’, ‘MN’, ‘ME’, ‘MS’, ‘MA’, ‘MZ’, ‘MM’, ‘NA’, ‘NR’, ‘NP’, ‘NL’, ‘NC’, ‘NZ’, ‘NI’, ‘NE’, ‘NG’, ‘NU’, ‘NF’, ‘MP’, ‘NO’, ‘OM’, ‘PK’, ‘PW’, ‘PS’, ‘PA’, ‘PG’, ‘PY’, ‘PE’, ‘PH’, ‘PN’, ‘PL’, ‘PT’, ‘PR’, ‘QA’, ‘RE’, ‘RO’, ‘RU’, ‘RW’, ‘BL’, ‘SH’, ‘KN’, ‘LC’, ‘MF’, ‘PM’, ‘VC’, ‘WS’, ‘SM’, ‘ST’, ‘SA’, ‘SN’, ‘RS’, ‘SC’, ‘SL’, ‘SG’, ‘SX’, ‘SK’, ‘SI’, ‘SB’, ‘SO’, ‘ZA’, ‘GS’, ‘SS’, ‘ES’, ‘LK’, ‘SD’, ‘SR’, ‘SJ’, ‘SZ’, ‘SE’, ‘CH’, ‘SY’, ‘TW’, ‘TJ’, ‘TZ’, ‘TH’, ‘TL’, ‘TG’, ‘TK’, ‘TO’, ‘TT’, ‘TN’, ‘TR’, ‘TM’, ‘TC’, ‘TV’, ‘UG’, ‘UA’, ‘AE’, ‘GB’, ‘US’, ‘UM’, ‘UY’, ‘UZ’, ‘VU’, ‘VE’, ‘VN’, ‘VG’, ‘VI’, ‘WF’, ‘EH’, ‘YE’, ‘ZM’, ‘ZW’]

class phantom.iso3166.ParsedAlpha2(instance)[source]#

Bases: str, Phantom

classmethod parse(instance)[source]#

Normalize mixed case country code.

Raises:

InvalidCountryCode

Parameters:

instance (object) –

Return type:

phantom.iso3166.ParsedAlpha2

phantom.iso3166.is_alpha2_country_code(value)#
Parameters:

value (object) –

Return type:

bool

phantom.iso3166.normalize_alpha2_country_code(country_code)[source]#

Normalize mixed case country code.

Raises:

InvalidCountryCode

Parameters:

country_code (str) –

Return type:

phantom.iso3166.ParsedAlpha2

exception phantom.iso3166.InvalidCountryCode[source]#

Bases: TypeError

Datetime#

Types for narrowing on the builtin datetime types.

These types can be used without installing any extra dependencies, however, to parse strings, python-dateutil must be installed or a phantom.errors.MissingDependency error will be raised when calling parse.

You can install python-dateutil by using the [dateutil] or [all] extras.

class phantom.datetime.TZAware(instance)[source]#

Bases: datetime, Phantom

A type for helping ensure that datetime objects are always timezone aware.

>>> isinstance(datetime.datetime.now(), TZAware)
False
>>> isinstance(datetime.datetime.now(tz=datetime.timezone.utc), TZAware)
True
classmethod parse(instance)[source]#

Parse an arbitrary value into a phantom type.

Raises:

TypeError

Parameters:

instance (object) –

Return type:

phantom.datetime.TZAware

class phantom.datetime.TZNaive(instance)[source]#

Bases: datetime, Phantom

>>> isinstance(datetime.datetime.now(), TZNaive)
True
>>> isinstance(datetime.datetime.now(tz=datetime.timezone.utc), TZNaive)
False
classmethod parse(instance)[source]#

Parse an arbitrary value into a phantom type.

Raises:

TypeError

Parameters:

instance (object) –

Return type:

phantom.datetime.TZNaive

Negated types#

This module provides a single type: SequenceNotStr. This type is equivalent to typing.Sequence except it excludes values of type str and bytes from the set of valid instances. This can be useful when you want to eliminate the easy mistake of forgetting to wrap a string value in a containing sequence.

class phantom.negated.SequenceNotStr(instance)[source]#

Bases: Sequence[T], Phantom, Generic[T]

Numeric intervals#

Types for describing narrower sets of numbers than builtin numeric types like int and float. Use the provided base classes to build custom intervals. For example, to represent number in the closed range [0, 100] for a volume control you would define a type like this:

class VolumeLevel(int, Inclusive, low=0, high=100):
    ...

There is also a set of concrete ready-to-use interval types provided, that use predicate functions from phantom.predicates.interval.

def take_portion(portion: Portion, whole: Natural) -> float:
    return portion * whole

All interval types fully support pydantic and appropriately adds inclusive or exclusive minimums and maximums to their schema representations.

Base classes#

class phantom.interval.Interval(instance)[source]#

Bases: Phantom[Comparable]

Base class for all interval types, providing the following class arguments:

  • check: IntervalCheck

  • low: Comparable (defaults to negative infinity)

  • high: Comparable (defaults to positive infinity)

Concrete subclasses must specify their runtime type bound as their first base.

__check__: IntervalCheck#
class phantom.interval.Exclusive(instance)[source]#

Bases: Interval

Uses phantom.predicates.interval.exclusive() as check.

class phantom.interval.Inclusive(instance)[source]#

Bases: Interval

Uses phantom.predicates.interval.inclusive() as check.

class phantom.interval.ExclusiveInclusive(instance)[source]#

Bases: Interval

Uses phantom.predicates.interval.exclusive_inclusive() as check.

class phantom.interval.InclusiveExclusive(instance)[source]#

Bases: Interval

Uses phantom.predicates.interval.inclusive_exclusive() as check.

Concrete interval types#

class phantom.interval.Natural(instance)[source]#

Bases: int, InclusiveExclusive

Represents integer values in the inclusive range [0, ∞).

class phantom.interval.NegativeInt(instance)[source]#

Bases: int, ExclusiveInclusive

Represents integer values in the inclusive range (-∞, 0].

class phantom.interval.Portion(instance)[source]#

Bases: float, Inclusive

Represents float values in the inclusive range [0, 1].

Regular expressions#

Types for representing strings that match a pattern.

class Greeting(Match, pattern=r"^(Hi|Hello)"):
    ...


assert isinstance("Hello Jane!", Greeting)
class phantom.re.Match(instance)[source]#

Bases: str, Phantom

Takes pattern: Pattern[str] | str as class argument as either a compiled Pattern or a str to be compiled. Uses the phantom.predicates.re.is_match() predicate.

class phantom.re.FullMatch(instance)[source]#

Bases: str, Phantom

Takes pattern: Pattern[str] | str as class argument as either a compiled Pattern or a str to be compiled. Uses the phantom.predicates.re.is_full_match() predicate.

Sized collections#

Types describing collections with size boundaries. These types should only be used with immutable collections. There is a naive check that eliminates some of the most common mutable collections in the instance check. However, a guaranteed check is probably impossible to implement, so some amount of developer discipline is required.

Sized types are created by subclassing PhantomBound and providing a minimum, maximum, or both as the min and max class arguments. For instance, NonEmpty is implemented using min=1.

This made-up type would describe sized collections with between 5 and 10 ints:

class SpecificSize(PhantomBound[int], min=5, max=10):
    ...

This example creates a type that accepts strings with 255 or less characters:

class SizedStr(str, PhantomBound[str], max=255):
    ...
class phantom.sized.SizedIterable(*args, **kwargs)[source]#

Bases: Sized, Iterable[T], Protocol[T]

Intersection of typing.Sized and typing.Iterable.

class phantom.sized.PhantomSized(instance)[source]#

Bases: Phantom[Sized], SizedIterable[T], Generic[T]

Takes class argument len: Predicate[int].

Discouraged in favor of PhantomBound, which better supports automatic schema generation.

class phantom.sized.PhantomBound(instance)[source]#

Bases: Phantom[Sized], SizedIterable[T], Generic[T]

Takes class arguments min: int, max: int.

class phantom.sized.NonEmpty(instance)[source]#

Bases: PhantomBound[T], Generic[T]

A sized collection with at least one item.

class phantom.sized.NonEmptyStr(instance)[source]#

Bases: str, NonEmpty[str]

A sized str with at least one character.

class phantom.sized.Empty(instance)[source]#

Bases: PhantomBound[T], Generic[T]

A sized collection with exactly zero items.