Source code for phantom.interval

"""
Types for describing narrower sets of numbers than builtin numeric types like ``int``
and ``float``. Use the provided base classes to build custom intervals. For example, to
represent number in the closed range ``[0, 100]`` for a volume control you would define
a type like this:

.. code-block:: python

    class VolumeLevel(int, Inclusive, low=0, high=100):
        ...

There is also a set of concrete ready-to-use interval types provided, that use predicate
functions from :py:mod:`phantom.predicates.interval`.

.. code-block:: python

    def take_portion(portion: Portion, whole: Natural) -> float:
        return portion * whole

All interval types fully support pydantic and appropriately adds inclusive or exclusive
minimums and maximums to their schema representations.
"""

from __future__ import annotations

from contextlib import suppress
from typing import Any
from typing import TypeVar

from typing_extensions import Final
from typing_extensions import Protocol

from . import Phantom
from . import Predicate
from . import _hypothesis
from ._utils.misc import resolve_class_attr
from ._utils.types import Comparable
from ._utils.types import SupportsEq
from .predicates import interval
from .schema import Schema

N = TypeVar("N", bound=Comparable)
Derived = TypeVar("Derived", bound="Interval")


class IntervalCheck(Protocol):
    def __call__(self, a: N, b: N) -> Predicate[N]:
        ...


inf: Final = float("inf")
neg_inf: Final = float("-inf")


class _NonScalarBounds(Exception):
    ...


def _get_scalar_int_bounds(
    type_: type[Interval],
    exclude_min: bool = False,
    exclude_max: bool = False,
) -> tuple[int | None, int | None]:
    low = type_.__low__ if type_.__low__ != neg_inf else None
    high = type_.__high__ if type_.__high__ != inf else None

    if low is not None:
        try:
            scalar_low = int(low)  # type: ignore[call-overload]
        except TypeError as exception:
            raise _NonScalarBounds from exception

        if exclude_min:
            scalar_low += 1
    else:
        scalar_low = None

    if high is not None:
        try:
            scalar_high = int(high)  # type: ignore[call-overload]
        except TypeError as exception:
            raise _NonScalarBounds from exception

        if exclude_max:
            scalar_high -= 1
    else:
        scalar_high = None

    return scalar_low, scalar_high


def _get_scalar_float_bounds(
    type_: type[Interval],
) -> tuple[float | None, float | None]:
    low = type_.__low__ if type_.__low__ != neg_inf else None
    high = type_.__high__ if type_.__high__ != inf else None

    if low is not None:
        try:
            low = float(low)  # type: ignore[arg-type]
        except TypeError as excpetion:
            raise _NonScalarBounds from excpetion

    if high is not None:
        try:
            high = float(high)  # type: ignore[arg-type]
        except TypeError as exception:
            raise _NonScalarBounds from exception

    return low, high


def _resolve_bound(
    cls: type,
    name: str,
    argument: Comparable | None,
    default: Comparable,
) -> None:
    inherited = getattr(cls, name, None)

    if argument is not None:
        resolved = argument
    elif inherited is not None:
        resolved = inherited
    else:
        resolved = default

    setattr(cls, name, resolved)


[docs]class Interval(Phantom[Comparable], bound=Comparable, abstract=True): """ Base class for all interval types, providing the following class arguments: * ``check: IntervalCheck`` * ``low: Comparable`` (defaults to negative infinity) * ``high: Comparable`` (defaults to positive infinity) Concrete subclasses must specify their runtime type bound as their first base. """ __check__: IntervalCheck __low__: Comparable __high__: Comparable def __init_subclass__( cls, check: IntervalCheck | None = None, low: Comparable | None = None, high: Comparable | None = None, **kwargs: Any, ) -> None: _resolve_bound(cls, "__low__", low, neg_inf) _resolve_bound(cls, "__high__", high, inf) resolve_class_attr(cls, "__check__", check) if getattr(cls, "__check__", None) is None: raise TypeError(f"{cls.__qualname__} must define an interval check") super().__init_subclass__( predicate=cls.__check__(cls.__low__, cls.__high__), **kwargs, ) @classmethod def parse(cls: type[Derived], instance: object) -> Derived: return super().parse( cls.__bound__(instance) if isinstance(instance, str) else instance )
def _format_limit(value: SupportsEq) -> str: if value == inf: return "∞" if value == neg_inf: return "-∞" return str(value)
[docs]class Exclusive(Interval, check=interval.exclusive, abstract=True): """Uses :py:func:`phantom.predicates.interval.exclusive` as ``check``.""" @classmethod def __schema__(cls) -> Schema: return { **super().__schema__(), # type: ignore[misc] "description": ( f"A value in the exclusive range ({_format_limit(cls.__low__)}, " f"{_format_limit(cls.__high__)})." ), "exclusiveMinimum": cls.__low__ if cls.__low__ != neg_inf else None, "exclusiveMaximum": cls.__high__ if cls.__high__ != inf else None, } @classmethod def __register_strategy__(cls) -> _hypothesis.SearchStrategy | None: from hypothesis.strategies import floats from hypothesis.strategies import integers with suppress(_NonScalarBounds): # pragma: no cover if issubclass(cls.__bound__, int): return integers( *_get_scalar_int_bounds(cls, exclude_min=True, exclude_max=True) ) if issubclass(cls.__bound__, float): return floats( *_get_scalar_float_bounds(cls), exclude_min=True, exclude_max=True ) return None
[docs]class Inclusive(Interval, check=interval.inclusive, abstract=True): """Uses :py:func:`phantom.predicates.interval.inclusive` as ``check``.""" @classmethod def __schema__(cls) -> Schema: return { **super().__schema__(), # type: ignore[misc] "description": ( f"A value in the inclusive range [{_format_limit(cls.__low__)}, " f"{_format_limit(cls.__high__)}]." ), "minimum": cls.__low__ if cls.__low__ != neg_inf else None, "maximum": cls.__high__ if cls.__high__ != inf else None, } @classmethod def __register_strategy__(cls) -> _hypothesis.SearchStrategy | None: from hypothesis.strategies import floats from hypothesis.strategies import integers with suppress(_NonScalarBounds): # pragma: no cover if issubclass(cls.__bound__, int): return integers(*_get_scalar_int_bounds(cls)) if issubclass(cls.__bound__, float): return floats(*_get_scalar_float_bounds(cls)) return None
[docs]class ExclusiveInclusive(Interval, check=interval.exclusive_inclusive, abstract=True): """Uses :py:func:`phantom.predicates.interval.exclusive_inclusive` as ``check``.""" @classmethod def __schema__(cls) -> Schema: return { **super().__schema__(), # type: ignore[misc] "description": ( f"A value in the half-open range ({_format_limit(cls.__low__)}, " f"{_format_limit(cls.__high__)}]." ), "exclusiveMinimum": cls.__low__ if cls.__low__ != neg_inf else None, "maximum": cls.__high__ if cls.__high__ != inf else None, } @classmethod def __register_strategy__(cls) -> _hypothesis.SearchStrategy | None: from hypothesis.strategies import floats from hypothesis.strategies import integers with suppress(_NonScalarBounds): # pragma: no cover if issubclass(cls.__bound__, int): return integers(*_get_scalar_int_bounds(cls, exclude_min=True)) if issubclass(cls.__bound__, float): return floats(*_get_scalar_float_bounds(cls), exclude_min=True) return None
[docs]class InclusiveExclusive(Interval, check=interval.inclusive_exclusive, abstract=True): """Uses :py:func:`phantom.predicates.interval.inclusive_exclusive` as ``check``.""" @classmethod def __schema__(cls) -> Schema: return { **super().__schema__(), # type: ignore[misc] "description": ( f"A value in the half-open range [{_format_limit(cls.__low__)}, " f"{_format_limit(cls.__high__)})." ), "minimum": cls.__low__ if cls.__low__ != neg_inf else None, "exclusiveMaximum": cls.__high__ if cls.__high__ != inf else None, } @classmethod def __register_strategy__(cls) -> _hypothesis.SearchStrategy | None: from hypothesis.strategies import floats from hypothesis.strategies import integers with suppress(_NonScalarBounds): # pragma: no cover if issubclass(cls.__bound__, int): return integers(*_get_scalar_int_bounds(cls, exclude_max=True)) if issubclass(cls.__bound__, float): return floats(*_get_scalar_float_bounds(cls), exclude_max=True) return None
[docs]class Natural(int, InclusiveExclusive, low=0): """Represents integer values in the inclusive range ``[0, ∞)``.""" @classmethod def __schema__(cls) -> Schema: return { **super().__schema__(), # type: ignore[misc] "description": "An integer value in the inclusive range [0, ∞).", }
[docs]class NegativeInt(int, ExclusiveInclusive, high=0): """Represents integer values in the inclusive range ``(-∞, 0]``.""" @classmethod def __schema__(cls) -> Schema: return { **super().__schema__(), # type: ignore[misc] "description": "An integer value in the inclusive range (-∞, 0].", }
[docs]class Portion(float, Inclusive, low=0, high=1): """Represents float values in the inclusive range ``[0, 1]``.""" @classmethod def __schema__(cls) -> Schema: return { **super().__schema__(), # type: ignore[misc] "description": "A float value in the inclusive range [0, 1].", }